作者简介 Ian Goodfellow,谷歌公司(Google) 的研究科学家,2014 年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。Ian Goodfellow 在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。 Yoshua Bengio,蒙特利尔大学计算机科学与运筹学系(DIRO) 的教授,蒙特利尔学习算法研究所(MILA) 的负责人,CIFAR 项目的共同负责人,加拿大统计学习算法研究主席。Yoshua Bengio 的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。 Aaron Courville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA 实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。Aaron Courville 主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI 相关任务方面也有所研究。 中文版审校者简介 张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。 译者简介 赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。 黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。 符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。 李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。
AI圣经!深度学习领域奠基性的经典畅销书!长期位居美国亚马逊AI和机器学习类图书榜首!所有数据科学家和机器学习从业者的必读图书!特斯拉CEO埃隆·马斯克等国内外众多专家推荐! 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。 本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。*后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。 《深度学习》这本书既可以被本科生或研究生用于规划其学术界或工业界生涯,也适用于希望在各种产品或平台上开始使用深度学习技术的软件工程师。作者在本书的配套网站上为读者和教师提供了补充资料。中文版读者可以访问人民邮电出版社异步社区www.epubit.com.cn获取相关信息。 封面特色: 由艺术家Daniel Ambrosi提供的中央公园杜鹃花步道梦幻景观。在Ambrosi的亿级像素全景图上,应用Joseph Smarr(Google)和Chirs Lamb(NVIDIA)修改后的Google DeepDream开源程序,创造了Daniel Ambrosi的“幻景”。